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Abstract In order to study the uniformly translating solution of some non-linear evo-
lution equations such as the complex Ginzburg–Landau equation, this paper presents
a qualitative analysis to a Duffing–van der Pol non-linear oscillator. Monotonic prop-
erty of the bounded exact solution is established based on the construction of a convex
domain. Under certain parametric choices, one first integral to the Duffing–van der
Pol non-linear system is obtained by using the Lie symmetry analysis, which consti-
tutes one of the bases for further work of obtaining uniformly translating solutions of
the complex Ginzburg–Landau equation.

Keywords Ginzburg–Landau equation · Autonomous system · First integral ·
Oscillator · Equilibrium point · Lie symmetry.
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1 Introduction

The word ‘zawgyne’ is consistently translated into the English language as ‘pairs’. In
scientific literature its meaning is extended to incorporate such concepts as ‘duality’,
‘complementarity’, and several other concepts reflecting conjugate and/or reciprocal
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properties. Today within many respective disciplines, from the natural, engineering,
biological and social sciences, complementarity and duality are becoming multi-dis-
ciplinary topics that play a crucial role in many physical, chemical and biological
phenomena, and form the basis for solving many underlying non-convex or global
optimization problems that arise in sciences and engineering [1,2]. In physics, com-
plementarity is a basic principle of quantum theory, and refers to effects such as the
wave–particle duality, in which different measurements made on a system reveal it
to have either particle-like or wave-like properties. Duality exists everywhere and in
nature is amazingly beautiful. In our daily life, it means the sort of harmony of two
opposite or complementary parts by which they integrate into a whole. The theory of
duality is a vast subject, particularly in natural sciences. Mathematics lies at its root. It
has beautiful theoretical properties, realistic applications, and pleasing relationships
with the existing fundamental theories [3–9].

In many phenomena described by non-linear systems which arise in the areas of
physics, engineering and convex/non-convex or global optimization, the direct/indi-
rect interaction is exhibited between the general complementarity, duality principles
and the special structures of particular problems to which they can be applied (recent
developments in applied mathematical modeling, analysis and optimization allow us
analyze models without restrictive assumptions, like differentiability of convexity).
This interaction can lead to effective computational methods that take advantage
of the structure presented in the problem, with particular interests in the numerical
methods and mathematical computations [10–12]. The case of non-linear dissipative
systems and their applications in modern nonlinear mechanics is a typical example.
All the equations which are known to be exactly integrable are of the Hamiltonian or
purely dispersive type. That is, dissipation is discarded entirely or at best taken into
account perturbatively in the limit of very weak dissipation. On the other hand, for
many macroscopic phenomena in physics dissipation is not just a small perturbation,
but plays a significant role in the determination of the dynamical behavior. Therefore,
it seems natural to ask whether it is possible to have a strongly dissipative system
whose solutions share at least some of the properties which those prototype systems
known to be exactly integrable; whether it is, for example, possible to have particle-
like solutions of an equation of evolution, which collide and interpenetrate, but which
are unchanged in speed, size, and shape after collision.

In this paper, we consider a Duffing–van der Pol oscillator with two polynomial
non-linearities

ẍ + (α + βx2)ẋ − γ x + x3 − µx5 = 0, (1)

where α, β, γ and µ are real constants, and an overdot denotes differentiation with
respect to time. Equation 1 is the well-studied but still challenging problem in non-
convex dynamics with autonomous version which arises in many contexts of physics
and engineering. For example, several special cases of Eq. 1 are widely applied to the
study of oscillations of a rigid pendulum undergoing with moderately large amplitude
motion [13], vibrations of a buckled beam and so on [14–16]. It has provided a useful
paradigm for studies in non-linear oscillations and chaotic dynamical systems with
a forced term on the right-hand-side, dating back to the development of approxi-
mate analytical methods based on perturbative ideas [13], and still continues, with
the advent of fast numerical integration by computer, to be used as an archetypal
illustration of chaos [14,16–19]. In particular, we see that
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(i) when µ = 0 in (1), then Eq. 1 becomes

ẍ + (α + βx2)ẋ − γ x + x3 = 0, (2)

which is the standard form of the Duffing–van der Pol oscillator. Equation 2
arises in a model describing propagation of voltage pulses along a neuronal
axon and certain flow induced structural vibration problems in which the struc-
tural nonlinearities act to maintain overall stability. It has received a lot of
attention by many authors. A vast amount of literature exists on this equation,
for details see, for example, [13,14,20,21] and references therein.

(ii) when β = 0 and µ = 0, then

ẍ + αẋ − γ x + x3 = 0, (3)

and (3) incorporates the force-free Duffing equation whose integrability, non-
integrability properties and existence of the limit cycle are well known [13,22],
where α is the coefficient of viscous damping and the term −µx+x3 represents
the nonlinear restoring force, acting like a hard spring.

(iii) when the two higher-order non-linearities are absent in (1), it becomes the
well-known van der Pol equation [23,24]

ẍ + (α + βx2)ẋ − γ x = 0, (4)

which was suggested by van der Pol as a non-linear model for the study of the
electrical circuit. The sign of the damping term depends on the magnitude of
the displacement x.

As far as the integrability properties of Eq. 1 are concerned not much progress has
been made mainly due to the fact that even one of its particular case (2) does not pass
the Painlevé test as it admits a movable algebraic branch point and a local Laurent
expansion in the form [25]

x(t) = 3
2β

· τ−1/2 + 3
2β

·
(

3
2β

− α

2

)
τ 1/2 + a3τ + · · · ,

where τ = t − t0 and t0 and a3 are arbitrary constants. Therefore, it is natural to ask
under what particular conditions, Eq. 1 is integrable and its exact solution can be
expressed in the functional form.

Motivated by potential applications in physics, engineering, biology and communi-
cation theory, Eqs. 1–4 have received an increasing interest, and hence the literature
on these equations is very comprehensive. Various methods for studying their prop-
erties with/without the external forcing term on feedback control [26–29], strange
attractor [30–33], stability [34–36], periodic solutions [37–40] and numerical simula-
tions [41–43] have been proposed and some profound results have been established.
A phase analysis to Eqs. 2 and 3 is presented in [44] and more qualitative studies have
been described in [22]. Exact solutions were discussed by Chen using the target func-
tion method [45], but explicit solutions were not shown. Note that Eq. 2 satisfies the
Painlevé condition with a certain parametric choice [25,46]. In [47], exact solutions to
Eq. 3 were presented by using the elliptic function method for various special cases.
The harmonic solutions were investigated by McCartin using the method of van der
Pol [34]. The behavior of the solutions of the Duffing’s equation near the separatrix
were treated by Hale and Spezamiglio [48].
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On the hand, describing traveling waves of non-linear evolution equations has been
one of basic problems in theoretical and experimental physics, and traveling wave
solutions to many one-dimensional non-linear evolution equations can be derived
from a set of ordinary differential equations that can be interpreted as a flow in a
three-dimensional phase space. In the past decade, experiments on one-dimensional
states of non-linear traveling wave convection were undertook in a narrow annular
cell [49,50]. Spatially uniform states are found to be stable within a band of wave
numbers whose width grows approximately as the square root of the distance above
a saddle-node Rayleigh number. Inside the band, the static properties of the travel-
ing waves were measured, including their response to spatial inhomogeneities in the
Rayleigh number. Outside the stability band, traveling wave states become unstable
to temporally growing modulations of the spatial wave-number profile that propagate
through the system as the group velocity of the underlying traveling waves. What are
the prospects for a theoretical explanation for the results presented in the experi-
ments? The complex Ginzburg–Landau equation (CGLE) is the usual model invoked
in theoretical discussions of pattern-forming systems. The lowest-order CGLE which
describes a system exhibiting a subcritical bifurcation to traveling waves must con-
tain a quintic non-linearity; at this order, it is necessary to include the lowest-order
non-linear gradient terms [51,52]

ut = αu + (b1 + ic1)uxx − (b2 − ic2)|u|2u − (b3 − ic3)|u|4u

+(b4 + ic4)(|u|2u)x + (b5 + ic5)(|u|2)xu, (5)

where u(x, t) is a complex function, and bi, ci (i = 1, 2, . . . , 5) and α are real coefficients.
This equation can be examined for stability against phase modulations using rather
straightforward techniques [49]. However, there is an immediate problem. This equa-
tion cannot even account for the non-linear dispersion of the stable traveling wave
studied in these experiments. More results on the special subclass of Eq. 5 can be
seen in [50–53] and the analysis for traveling wave solutions (or uniformly translating
solutions) appears to be dominated by numerical methods, perturbation theory and
so on. It does not seem that the detailed analysis of traveling wave solutions of CGLE
(5) and their explicitly functional forms have been presented previously.

Since Eq. 1 is not solvable in the general case and does not pass Painlevé test, to
analyze the exact solution, qualitative study together with ingenious mathematical
techniques appears to be more important. Recently, qualitative results for physical,
chemical and biological systems have been studied extensively [54–56]. Our primary
goal of this paper is to provide a qualitative analysis to Eq. 1 and find the Lie symmetry
under certain parametric choices. In the subsequent work, we will apply the results
obtained in this paper to the study of CGLE for its uniformly translating solutions.
Several classes of uniformly translating solutions will be established under various
parameter conditions.

The organization of this paper is as follows. In Sect. 2, making use of the qualitative
theory of dynamical systems, we demonstrate a qualitative analysis to a two-
dimensional plane autonomous system which is equivalent to the Duffing–van der
Pol non-linear oscillator Eq. 1. In Sect. 3, we show that the Duffing–van der Pol non-
linear oscillator admits infinite dimensional symmetry algebras under given paramet-
ric choices for which the system becomes integrable. The associated first integrals are
given by means of the Lie symmetry method. Sect. 4 is a brief conclusion.
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2 Qualitative study

In this section, we give a qualitative analysis to Eq. 1 which indicates that under
certain parametric conditions, Eq. 1 has a bounded non-trivial solution. In next sec-
tion, we will apply the Lie symmetry method to seek the first integral for Eq. 1. By
using the first integral, Eq. 1 can be reduced to a first-order ordinary differential
equation (ODE), thus the bounded solutions can be found by solving the resultant
first-order ODE.

Letting dx
dt

= y, Eq. 1 is equivalent to the following two-dimensional autonomous
system

{
ẋ = P(x, y) = y
ẏ = Q(x, y) = −(α + βx2)y + γ x − x3 + µx5.

(6)

In this section, using the qualitative theory of differential equations, we will show a
qualitative result to the Duffing–van der Pol non-linear Eq. 1. Specifically, we show
that under certain conditions

α < 0, β < 0, µ < 0, γ > 0, (7)

the bounded exact solution x(t) of Eq. 1 is strictly monotone decreasing with respect
to the time t. To prove this, we need to show that x′(t) �= 0 for any t ∈ R and
x(−∞) > x(+∞) under condition (7). That is, the associated orbit in the Poincaré
phase plane does not intersect the x-axis for any t.

Consider system (6) in the Poincaré phase plane. Under condition (7), system (6)
has three equilibrium points

E

⎛
⎝−

√
1 − √

1 − 4µγ

2µ
, 0

⎞
⎠ , O(0, 0), Q

⎛
⎝

√
1 − √

1 − 4µγ

2µ
, 0

⎞
⎠ . (8)

Denote �1 = α +βx2
1, �2 = 1−4µγ−√

1−4µγ

µ
, �3 = �2

1 + 4�2, where x2
1 = 1−√

1−4µγ

2µ
.

Analyzing the eigenvalues of the linearization of system (6), we have

(1) when �3 ≥ 0, O is a saddle point, E and Q are unstable nodal points;
(2) when �3 < 0, O is a saddle point, E and Q are unstable spiral points.

Moreover, using the Poincaré transformation, we can see that there are two infinite
equilibrium points on the y-axis. Since ∂P(x, y)

∂x + ∂Q(x, y)
∂y = α + βx2 < 0, according to

the Bendixson Theorem ([44]), system (6) has no closed orbit in the Poincaré phase
plane. That is, Eq. 1 has neither bell-profile wave solutions, nor periodic solutions.
The local behavior at the equilibrium points of system (6) is depicted in Fig. 1.

Notice that in the left scheme of Fig. 1, except the equilibrium points E, Q and
the orbits L(E, O) and L(Q, O), all other orbits in the Poincaré phase plane either
emanate from the infinite equilibrium point or approach the infinite equilibrium point
as t → +∞. This implies that the y-coordinates of the points which lies on the orbits
except E, O, Q, L(E, O) and L(Q, O) are unbounded, so are the corresponding
x-coordinates on the same orbits. This can be seen by way of contradiction. Assume
that there exists a positive number δ such that |x| < δ as y → ∞. By the Mean-value

Theorem, dy
dx

is unbounded.
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Fig. 1 The local behavior of system (6) in the cases of �3 ≥ 0 and �3 < 0, respectively

On the other hand, since the slope of the tangent line to each orbit at the point
(x, y) can be expressed

dy
dx

= −(α + βx2) + γ x − x3 + µx5

y
. (9)

Equation 9 implies that dy
dx

< |α + βδ2| + 1
2 as y → ∞. This yields a contradiction.

Letting Q(x, y) = 0, we have

y = γ x − x3 + µx5

α + βx2 , (10)

which is the trajectory on which each orbit points to the left or right. Observe that
under conditions (7), expression (10) can be rewritten as

y = µx(x2 − x2
1)(x

2 + x2
2)

α + βx2 ,
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where x2
1 = 1−√

1−4µγ

2µ
and x2

2 = − 1+√
1−4µγ

2µ
. Note that the graph of Eq. 10 is

symmetric about the origin and the derivative of (10) is

y′ = 3µβx6 + 5αµx4 − βx4 − 3αx2 − γβx2 + αγ

(α + βx2)2 .

This indicates that the curve of Eq. 10 has at most two critical points in quadrant IV.
Construct two lines l1 and l2. l1 is the tangent line of the curve of Eq. 10 at the origin,

i.e., y = γ
α

x, and l2 passes through Q(x1, 0) with the slope K = −α+
√

α2+8µx2
1(x

2
1+x2

2)

4 ,
i.e.,

l2 : y =
−α +

√
α2 + 8µx2

1(x
2
1 + x2

2)

4
(x − x1). (11)

Denote the intersection point of l1 and l2 by T, and the x-coordinate of T by xT .
Immediately we have the following

0 < xT =
−α +

√
α2 + 8µx2

1(x
2
1 + x2

2)

4
x1

K − (γ /α)
< x1. (12)

Note that the curve of Eq. 10 is above the tangent line l1 in quadrant IV. Denote
by � the convex domain bounded by line segments OQ, QT and TO (see Fig. 2). It
suffices to prove that any integral orbit which starts from a point outside the convex
domain �, cannot re-enter the convex domain � as t → ±∞. It is obvious that there
is no integral orbit entering � through OQ, because all orbits at each point of the
x-axis between O and Q are orthogonally along the direction of the positive y-axis. In
addition, at the each point of the line segment OT, we have

Ω

T

y

O Q x

l 1l 2

Fig. 2 The convex domain � bounded by OQT
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dy
dx

∣∣
(x, y)∈OT = −α − βx2 + γ x − x3 + µx5

(γ /α)x

∣∣∣∣∣
(x, y)∈OT

= −βx2 − α

γ
x2 + αµ

γ
x4

>
γ

α
.

This implies that all orbits at each point on the line segment OT point outward.
Similarly, on the line segment QT, using (11), we have

dy
dx

∣∣
(x, y)∈l2 = −(α + βx2) + µx5 − x3 + γ x

y

∣∣∣∣∣
(x, y)∈QT

= −(α + βx2) + µx(x2 − x2
1)(x

2 + x2)

K(x − x1)

∣∣∣∣∣
(x, y)∈QT

> −α − βX2
T + µx(x + x1)(x2 + x2

2)

K
.

Since xT ≤ x ≤ x1, from (12), we obtain

dy
dx

∣∣
(x, y)∈QT > −α − βx2

T + 2µx2
1(x

2
1 + x2

2)

K

>
−α +

√
α2 + 8µx2

1(x
2
1 + x2

2)

4
= K.

This implies that except at Q, all orbits at each point of line segment QT point
outward. Therefore, the orbit (Q, O) must lie inside the convex domain �. In other
words, except the end points O and Q, the orbit L(Q, O) cannot intersect the x-axis.
Hence, x′(t) �= 0. Furthermore, from (8), we have

lim
t→+∞ x(t) = x(+∞) = 0, lim

t→−∞ x(t) = x(−∞) =
√

1 − √
1 − 4µγ

2µ
.

Therefore, we conclude that under condition (7) and �3 ≥ 0, the bounded exact
solution x(t) associated with the orbit L(Q, O) is strictly monotone decreasing with
respect to t.

3 Lie symmetries

Painlevé and his colleagues [46] considered the problem of classifying differential
equations whose solutions, as functions of a complex variable, have only poles as
movable (i.e., dependent upon initial conditions) singularities. It has been shown that
equations with this Painlevé property are more likely to be explicitly solvable. For
a second-order ordinary differential equation, it has been known that under what
conditions such an equation could be reduced to a first-order equation whose solu-
tions were free of movable critical points. However, as we know, many second-order
ordinary differential equations do not pass the Painlevé test, but they possess one first
integral and hence are integrable.
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During the last century, the integrability problem of non-linear differential equa-
tions and fascinating qualitative phenomena have attracted the attention of both
experimentalists and theorists. One of the most innovative and powerful methods for
analyzing and computing non-linear partial differential equations is the Lie symmetry
method [57–59]. As clearly described in [57], a significant feature of this approach is
that in many non-linear problems, one can derive special solutions associated with
non-linear differential equations straightforwardly which are otherwise inaccessible
through other existing methods [60–62]. The basic idea of the Lie symmetry method
is to seek the corresponding symmetry groups associated with a given differential
equation under a continuous group of transformations and to find a reduction trans-
formation from the symmetries. For the case of partial differential equations, the
reduction transformation can be used to reduce the number of independent variables
by one; for example, a PDE with two independent variables to an ordinary differential
equation (ODE). For a reduced ODE, one can check whether it is of Painlevé type
or not and it is often the case that when the reduced ODE is of Painlevé type it can
be solved explicitly thereby leading to a solution of the original PDE [63]. In this
section we show that the first integral of system (6) can be obtained by means of the
Lie symmetry method with certain parameter choices.

In order to find Lie symmetry, we need to look for the invariance of (6) under a
one-parameter infinitesimal point transformations of the form

Xi = xi + εηi(t, xi), i = 1, 2

T = t + εξ(t, xi). (13)

The corresponding infinitesimal generator is

V = ξ(t, xi)
∂

∂t
+ η(t, xi)

∂

∂t
. (14)

In order to find the first prolongation of the vector V, we take ξ = 0 in (14) and define
the corresponding first extended operator

Pr(1)V = ηi
∂

∂xi
+ η̇i

∂

∂ ẋi
,

where η̇i = Dtηi, i = 1, 2 and Dt is the total differential operator. V is called the
generator of a one-parameter symmetry group for system (6) if, whenever system (6)
is satisfied and

Pr(1)V(	i)|(3) =
(

ηi
∂

∂xi
+ η̇i

∂

∂ ẋi

)
(	i) = 0,

where the 	′
is (i = 1, 2) denote two equations in (6).

The invariance requirement of (6) under the infinitesimal transformations (13) can
be expressed as{

η̇1 = η2
η̇2 = η1(−2βxy + γ − 3x2 + 5µx4) − η2(α + βx2).

(15)

In order to identify a non-trivial infinite dimensional Lie algebra of symmetry vector
fields which can be directly associated with the integral of motion for a suitable para-
metric choice, we may start our study by assuming that the Lie symmetries ηi (i = 1, 2)

in (15) have the quadratic form
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η1 = a1 + a2y + a3y2,

η2 = b1 + b2y + b3y2, (16)

where the a′
is and b′

is (i = 1, 2, 3) are functions of t and x. Substituting (16) into
(15) and equating the coefficients of various powers of y, one can get the resultant
determining equations

a3x = 0, (17)

b3x + 2βa3x = 0, (18)

a3t + a2x − 2(α + βx2)a3 − b3 = 0, (19)

b3t + b2x − (α + βx2)b3 − (γ − 3x2 + 5µx4)a3 + 2βa2x = 0,

a2t + a1x − (α + βx2)a2 + 2(γ x − x3 + 5µx4)a3 − b2 = 0, (20)

b2t + b1x + 2(γ x − x3)b3 − (γ − 3x2 + 5µx4)a2 + 2βa1x = 0,

a1t + (γ x − x3 + 5µx4)a2 − b1 = 0, (21)

b1t − (γ x − x3 + 5µx4)b2 − (γ − 3x2 + 5µx4)a1 + (α + βx2)b1 = 0.

Assuming that a3 = a(t), and from (17)–(21), we have

µβa(t) = 0

2α − 6
β

+ 2
3
γβ = 0

6
β

(α2 − 2γ ) − 54α

β2 + 108
β3 + 2αγ = 0.

Case 1 When µ = 0 and β �= 0, under the parametric choices

α · β = 4, β2 · γ = −3, (22)

with the aid of Maple, we can solve the determining equations consistently and obtain
non-trivial forms for the functions a′

is and b′
is. Using these functions, we obtain a four-

parameter symmetry group for system (6), and then the corresponding four vector
fields are given as follows:

S1 = X = y
∂

∂x
−

[
(βx2 + 4

β
)y + x3 + 3

β2 x
]

∂

∂y
,

S2 = e(2/β)t
(

(y + x
β

)
∂

∂x
−

[
(βx2 + 1

β
)y + x3 + x

β2

]
∂

∂y

)
,

S3 = e6t/β
(

y2 + y
[

2
3
βx3 + 2x

β
+ c1e−3t/β

]

+x2
[

1
9
β2x4 + 2

3
x2 + 1

β2

]
+ c1xe−3t/β

[
1
3
βx2 + 1

β

])
S1,

S4 = e6t/β
(

y2 + y
[

2
3
βx3 + 2x

β
+ c1e−3t/β

]

+x2
[

1
9
β2x4 + 2

3
x2 + 1

β2

]
+ c1xe−3t/β

[
1
3
βx2 + 1

β

])
S2,
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where X is the dynamical vector field. Since the vector fields S3 and S4 are not
functionally independent, one can use them to generate the integral of motion
associated with the dynamical system (6) as

e6t/β
(

y2 + y
[

2
3
βx3 + 2x

β
+ c1e−3t/β

]

+x2
[

1
9
β2x4 + 2

3
x2 + 1

β2

]
+ c1xe−3t/β

[
1
3
βx2 + 1

β

])
= c2. (23)

Letting c1 = 2c and c2 = −c2, we obtain a particular case of (23) as

e(3/β)t
(

y + β

3
x3 + x

β

)
+ c = 0. (24)

Combining (24) and (6), under condition (22) we can reduce Eq. 1 to an Able equation
of the first kind

ẋ + 1
3
βx3 + 1

β
x = −ce− 3

β
t. (25)

Case 2 When α = 0 and β = 0, apparently we can obtain one first integral to Eq. 1
for arbitrary γ and µ as

ẋ −
√

γ x2 − x4

2
+ µx6

3
+ C0 = 0, (26)

where C0 is arbitrary real constant.
Equations 25 and 26 are very useful when we solve CGLE for its uniformly trans-

lating solutions. They provide one of mathematical bases of further work [64], in
which several uniformly translating solutions under various parameter conditions are
expressed in terms of hyperbolic functions, implicit functions and trigonometrical
functions, respectively.

4 Conclusion

One of the most fundamental equations in the study of non-linear oscillations is the
Duffing–van der Pol equation, which has been discussed in many works, for different
systems arising in various scientific fields. Due to the occurrence of two higher-order
non-linear terms, many basic problems on the Duffing–van der Pol equation have not
been solved yet in the general case. Therefore, qualitative analysis as well as powerful
mathematical techniques seems to be more important.

In this paper, we apply the qualitative theory of planar systems to study a two-
dimensional plane autonomous system which is equivalent to the Duffing–van der
Pol Eq. 1. The monotone property of the bounded exact solution is found. One first
integral to the Duffing–van der Pol equation is obtained by using the Lie symmetry
method. Some applications of these qualitative results to the study of uniformly trans-
lating solutions of the complex Ginzburg–Landau equation will be demonstrated in a
subsequent work.
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